## Chemical Constituents of Phyllanthus reticulatus

by Ming-Sheng Lan<sup>a</sup>), Jian-Xiong Ma<sup>a</sup>)<sup>b</sup>)<sup>c</sup>), Chang-Heng Tan<sup>\*b</sup>), Song Wei<sup>c</sup>), and Da-Yuan Zhu<sup>b</sup>)

<sup>a</sup>) Guangxi Institute of Medicinal Plant, Nanning 530023, P. R. China
<sup>b</sup>) Department of Natural Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, P. R. China (phone and fax: +86-21-50806728; e-mail: chtan@mail.shcnc.ac.cn)

<sup>c</sup>) Guangxi Traditional Chinese Medical University, Nanning 530001, P. R. China

A new purine derivative, 3-(3-methylbut-2-en-1-yl)isoguanine (1), and a new cleistanthane-type diterpenoid glucoside, 19-hydroxyspruceanol 19-O- $\beta$ -D-glucopyranoside (2), together with eight known compounds were isolated from the whole plant of *Phyllanthus reticulatus*. The structures were elucidated by chemical and spectroscopic methods.

Introduction. – Phyllanthus reticulatus POIR. (Euphorbiaceae) is a folk medicine used for anti-inflammation and as analgetic, and for treatment of rheumatism in the Guangxi Zhuang national area of China [1]. It is a bushy shrub distributed widely in the tropics, from tropical Africa to India, China, and South-East Asia, and south to Queensland (northern Australia) [2]. Some reports have demonstrated that the extracts of this plant had antiplasmodial [3], antidiabetic [4], antimicrobial and cytotoxic [5], and hepatoprotective [6] bioactivities. Few studies on this plant revealed various chemical constituents such as triterpenoids, phytosterols, coumarin [5], flavonoids and phenols [7]. Our phytochemical investigation of the 75% EtOH extract of the title plant led to the isolation of 3-(3-methylbut-2-en-1-yl)isoguanine<sup>1</sup>) (1), a new purine derivative, and 19-hydroxyspruceanol 19- $O-\beta$ -D-glucopyranoside<sup>1</sup>) (2), a new cleistanthane-type diterpene glucoside, as well as of eight known compounds, including one lignan glycoside, mananthoside I [8], one polyphenol, (-)-epigallocatechin [9], four aromatic compound glucosides, isotachioside [10], carthamoside B<sub>5</sub> [11], hovetrichoside A [12], and 3,4-dihydroxyphenylpropanol 3-O- $\beta$ -D-glucopyranoside [13], and two megastigmane glycosides, turpenionosides A and B [14]. The above compounds are reported from this plant for the first time. In this paper, we describe the isolation and structural elucidation of 1 and 2.

**Results and Discussion.** – Compound **1** showed *quasi*-molecular-ion peaks at m/z 220 ( $[M + H]^+$ ), 242 ( $[M + Na]^+$ ), and 218 ( $[M - H]^-$ ) in the positive-ion- and negative-ion-mode ESI-MS, resp., in accord with the molecular formula  $C_{10}H_{13}N_5O$ , which was confirmed by the HR-ESI-MS. The structure of **1** was elucidated to be 3-(3-methylbut-2-en-1-yl)isoguanine<sup>1</sup>) on the basis of NMR analyses. The <sup>1</sup>H-NMR spectrum (*Table 1*) showed a *s* of an aromatic H-atom at  $\delta(H)$  8.11, and signals of a

<sup>1)</sup> Trivial atom numbering; for systematic names, see Exper. Part.

<sup>© 2010</sup> Verlag Helvetica Chimica Acta AG, Zürich



3-methylbut-2-en-1-yl group at  $\delta$ (H) 5.26 (t, J = 6.8 Hz, 1 H), 4.54 (d, J = 6.8 Hz, 2 H), 1.78 (s, 3 H), and 1.66 (s, 3 H). The <sup>13</sup>C-NMR and DEPT spectra (*Table 1*) displayed ten C-atom signals. Among them, five C-atoms were attributed to the (3-methylbut-2-en-1-yl) unit ( $\delta$ (C) 135.7, 119.0, 40.5, 25.3, and 17.9); the remaining four sp<sup>2</sup> quaternary C-atoms ( $\delta$ (C) 151.5, 150.6, 103.1, and 150.9), and one sp<sup>2</sup> CH group ( $\delta$ (C) 142.0) combined with five N-atoms formed a skeleton of isoguanine [15], indicating an alkenylated isoguanine. The HMBC experiments (*Table 1*) confirmed the isoguanine unit and the 3-methylbut-2-en-1-yl group attached at N(3) by the cross-peaks H–C(8)/C(4) and C(5), as well as CH<sub>2</sub>(10)/C(2) and C(4).

Table 1. <sup>1</sup>H- and <sup>13</sup>C-NMR Data (400 and 100 MHz, resp.; ( $D_6$ )DMSO) of  $1^1$ ).  $\delta$  in ppm, J in Hz.

|        | $\delta(C)$        | $\delta(H)$ | HMBC $(H \rightarrow C)$ |                      | $\delta(C)$ | $\delta(H)$       | HMBC $(H \rightarrow C)$ |
|--------|--------------------|-------------|--------------------------|----------------------|-------------|-------------------|--------------------------|
| C(2)   | 151.5 (s)          |             |                          | CH <sub>2</sub> (10) | 40.5 (t)    | 4.54 (d, J = 6.8) | C(2), C(4), C(12)        |
| C(4)   | 150.6 (s)          |             |                          | H - C(11)            | 119.0 (d)   | 5.26 (t, J = 6.8) | C(13), C(14)             |
| C(5)   | 103.1(s)           |             |                          | C(12)                | 135.7 (s)   |                   |                          |
| C(6)   | 150.9 (s)          |             |                          | Me(13)               | 17.9(q)     | 1.78(s)           | C(11), C(14)             |
| H-C(8) | 142.0 ( <i>d</i> ) | 8.11 (s)    | C(4), C(5)               | Me(14)               | 25.3 (q)    | 1.66 (s)          | C(11), C(13)             |

Compound 2 was obtained as a white amorphous powder. Its molecular formula was determined to be  $C_{26}H_{38}O_8$  by the HR-ESI-MS. Acid hydrolysis of 2 gave a Dglucose as sugar moiety. The structure of 2 was established to be 19-hydroxyspruceanol 19-O- $\beta$ -D-glucopyranoside<sup>1</sup>) by interpretation of its spectroscopic parameters and comparison with those of spruceanol (=(2R,4aR,10S)-8-ethenyl-1,2,3,4,4a,9,10,10aoctahydro-1,1,4a,7-tetramethylphenanthrene-2,6-diol) [16]. The <sup>1</sup>H- and <sup>13</sup>C-NMR and HMQC spectra of 2 (Table 2) showed that the aglycone contained 20 C-atoms and 25 C-bearing H-atoms (3 Me, 6 CH<sub>2</sub>, 4 CH, and 7 C). Among which a pentasubstituted aromatic ring ( $\delta$ (C) 154.9, 148.8, 140.4, 125.1, 121.1, and 111.2 (d);  $\delta$ (H) 6.64 (s)) and attached Me group ( $\delta(C)$  13.8 (q);  $\delta(H)$  2.09 (s)), an ethenyl group ( $\delta(C)$  137.8 (d) and 119.9 (t);  $\delta(H)$  6.57, 5.46, and 5.05 (each dd,  ${}^{2}J = 2.0$ ,  ${}^{3}J = 17.9$ , 11.4 Hz)), one isolated O-bearing CH<sub>2</sub> group ( $\delta$ (C) 72.8;  $\delta$ (H) 4.30 and 3.57 (each d, J = 10.2 Hz)), one Obearing CH group ( $\delta$ (C) 80.8;  $\delta$ (H) 3.29 (dd, J = 11.3, 5.9 Hz)), and two tertiary Me groups ( $\delta$ (H) 1.24 and 1.22) were assigned, indicating a spruce analogue [16]. Comparison of the <sup>13</sup>C-NMR data of the aglycone of **2** with those of spruceanol revealed that the most important difference was the isolated O-bearing  $CH_2$  group of 2 instead of a Me group ( $\delta(C)$  15.4) for Me(19) of spruce anol, indicating that the

aglycone of **2** was 19-hydroxyspruceanol. The HMBC spectrum (*Table 2*) exhibited cross-peaks between  $CH_2(19)$  and C(3), C(4), C(5), C(18) and C(1'), establishing that **2** is 19-hydroxyspruceanol 19-O- $\beta$ -D-glucopyranoside.

|                      | $\delta(C)$       | $\delta(\mathrm{H})$                              | HMBC $(H \rightarrow C)$                                    |
|----------------------|-------------------|---------------------------------------------------|-------------------------------------------------------------|
| CH <sub>2</sub> (1)  | 39.5 (t)          | 2.27 ( $dt$ , $J = 13.8, 3.3, H_a$ ),             | C(3), C(5), C(10)                                           |
|                      |                   | 1.45 (td, $J = 13.6, 3.2, H_{\beta}$ )            | C(5), C(10), C(20)                                          |
| $CH_{2}(2)$          | 29.7 (t)          | 1.79 (br. $d, J = 13.4, H_a$ ),                   |                                                             |
|                      |                   | 1.96 $(qd, J = 13.0, 3.2, H_{\beta})$             |                                                             |
| H-C(3)               | 80.8(d)           | 3.29 (dd, J = 11.3, 5.9)                          | C(4), C(18), C(19)                                          |
| C(4)                 | 44.2 (s)          |                                                   |                                                             |
| H-C(5)               | 52.7 ( <i>d</i> ) | 1.32 (dd, J = 12.3, 2.0)                          | C(3), C(4), C(6), C(7), C(9),<br>C(10), C(18), C(19), C(20) |
| CH <sub>2</sub> (6)  | 21.6(t)           | $1.73 - 1.79 (m, H_a),$                           | C(5), C(7), C(10)                                           |
| 2.                   |                   | 1.98 (br. $d, J = 12.7, H_{\beta}$ )              | C(4), C(5), C(7), C(8), C(10)                               |
| $CH_{2}(7)$          | 31.6 ( <i>t</i> ) | $2.74 (dd, J = 16.9, 5.2, H_a),$                  | C(6), C(8), C(9), C(14)                                     |
|                      |                   | 2.45 ( $ddd$ , $J = 16.9, 11.5, 7.0, H_{\beta}$ ) | C(5), C(6), C(8), C(9), C(14)                               |
| C(8)                 | 125.1(s)          |                                                   |                                                             |
| C(9)                 | 148.8 (s)         |                                                   |                                                             |
| C(10)                | 39.2 (s)          |                                                   |                                                             |
| H–C(11)              | 111.2 <i>(d)</i>  | 6.64 ( <i>s</i> )                                 | C(8), C(9), C(10), C(12),<br>C(13), C(17)                   |
| C(12)                | 154.9(s)          |                                                   |                                                             |
| C(13)                | 121.1(s)          |                                                   |                                                             |
| C(14)                | 140.4(s)          |                                                   |                                                             |
| C(15)                | 137.8 (d)         | 6.57 (dd, J = 17.9, 11.4)                         | C(8), C(13), C(14)                                          |
| $CH_{2}(16)$         | 119.9 (t)         | 5.46 (dd, J = 11.4, 2.0),                         | C(14)                                                       |
|                      |                   | 5.05 (dd, J = 17.9, 2.0)                          | C(14), C(15)                                                |
| Me(17)               | 13.8 (q)          | 2.09(s)                                           | C(8), C(9), C(11), C(12),<br>C(13), C(14)                   |
| Me(18)               | 24.4(q)           | 1.24 (s)                                          | C(1), C(5), C(9), C(10), C(19)                              |
| $CH_{2}(19)$         | 72.8(t)           | 3.57 (d, J = 10.2), 4.30 (d, J = 10.2)            | C(3), C(4), C(5), C(18), C(1')                              |
| Me(20)               | 26.3(q)           | 1.22 (s)                                          | C(1), C(5), C(9), C(10)                                     |
| H-C(1')              | 105.5(d)          | 4.22 (d, J = 7.9)                                 | C(19), C(2'), C(5')                                         |
| H-C(2')              | 75.5(d)           | 3.19(t, J = 8.3)                                  |                                                             |
| H-C(3')              | 78.6(d)           | 3.36(t, J = 8.5)                                  |                                                             |
| H-C(4')              | 72.0(d)           | 3.30(t, J = 8.5)                                  |                                                             |
| H-C(5')              | 78.4(d)           | 3.26 (br. $dd, J = 8.5, 4.7$ )                    |                                                             |
| CH <sub>2</sub> (6') | 63.1 ( <i>t</i> ) | 3.86 (dd, J = 12.0, 1.4),                         |                                                             |
|                      |                   | 3.68 (dd, J = 12.0, 4.7)                          |                                                             |

Table 2. <sup>1</sup>H- and <sup>13</sup>C-NMR Data (400 and 100 MHz, resp.; CD<sub>3</sub>OD) of **2**<sup>1</sup>). δ(H) in ppm, J in Hz.

This study was supported by grants from the Key New Drug Creation and Manufacturing Program (2009ZX09301-001) of the National Science & Technology Major Project of the Ministry of Science & Technology of China.

## **Experimental Part**

General. Column chromatography (CC): silica gel (SiO<sub>2</sub>; 200–300 mesh; Qingdao Haiyang, Co., Ltd., P. R. China), Sephadex LH-20 (Pharmacia Biotech AB, Uppsala, Sweden), ODS-A gel (Mitsubishi Chemical Industries Co., Ltd., Japan). TLC: silica gel HSGF<sub>254</sub> (Yantai Jiangyou Guijiao Kaifa Co., Ltd.,

P. R. China). Optical rotation: *Perkin-Elmer-341* polarimeter. UV Spectra: *Shimadzu-UV-2550* spectrophotometer;  $\lambda_{max}$  (log  $\varepsilon$ ) in nm. IR Spectra: *Nicolet-Magna-750-FTIR* spectrometer; KBr pellets; in cm<sup>-1</sup>. NMR Spectra: *Bruker-AV-400* instrument at 400 (<sup>1</sup>H) and 100 MHz (<sup>13</sup>C); in (D<sub>6</sub>)DMSO or CD<sub>3</sub>OD;  $\delta$  in ppm rel. to Me<sub>4</sub>Si; *J* in Hz. ESI-MS and HR-ESI-MS: *Bruker-Esquire-3000-plus* and *Finnigan-LC-QDECA* mass spectrometers, resp.; in *m/z* (rel. int.).

*Plant Material.* The fresh whole plants of *P. reticulatus* were collected in the Yongning County, Guangxi Province, P. R. China. The plant was identified by Prof. *S.-J. Wei* of the Guangxi Traditional Chinese Medicine University. A voucher specimen (No. 09-108) is deposited at the Herbarium of the Shanghai Institute of Materia Medica.

*Extraction and Isolation.* Air-dried and powdered whole plants of *P. reticulates* (5 kg) were extracted three times with 201 of 75% EtOH at r.t. The concentrated extract was partitioned between H<sub>2</sub>O and petroleum ether, CHCl<sub>3</sub>, AcOEt, and BuOH, resp. The BuOH fraction (108 g) was subjected to CC (SiO<sub>2</sub> (2 kg), column i.d.  $10 \times 90$  cm, CHCl<sub>3</sub>, CHCl<sub>3</sub>/MeOH 100:1, 50:1, 20:1, 10:1, 6:1, and 3:1): *Frs. A* – *G. Fr. E* yielded a solid which was further purified by CC (*Sephadex LH-20*, MeOH): **1** (12 mg). *Fr.* f (10.9 g) was separated by CC (SiO<sub>2</sub>, CHCl<sub>3</sub>/MeOH 10:1, 8:1, 6:1, and 3:1): *Frs. A* – *G. Fr. E* yielded a solid which was further purified by CC (*Sephadex LH-20*, MeOH): **1** (12 mg). *Fr.* f (10.9 g) was separated by CC (SiO<sub>2</sub>, CHCl<sub>3</sub>/MeOH 10:1, 8:1, 6:1, and 3:1): *Frs. F*<sub>1</sub>–*F*<sub>4</sub>. From *Fr. F*<sub>2</sub> (320 mg), **2** (15 mg) was obtained after two CC (1. *ODS-A* gel, 20%, 50%, 70% and 95% MeOH/H<sub>2</sub>O; 2. Foregoing 70% portion, *Sephadex LH-20*, MeOH). *Fr. F*<sub>3</sub> (550 mg) was subjected to CC (SiO<sub>2</sub>, CHCl<sub>3</sub>/MeOH/H<sub>2</sub>O 5:1:0.1): *Frs. F*<sub>3.1</sub> – *F*<sub>3.8</sub>. *Fr. F*<sub>3.1</sub> (45 mg) gave isotachioside (4 mg) after purification by two CC (1. *ODS-A* gel, 10–50% MeOH/H<sub>2</sub>O; 2. *Sephadex LH-20*, MeOH). By the same procedure as applied to *Fr. F*<sub>3.1</sub>, *Frs. F*<sub>3.4</sub> (62 mg), *F*<sub>3.5</sub> (80 mg), *F*<sub>3.6</sub> (50 mg), *F*<sub>3.7</sub> (45 mg), and *F*<sub>3.8</sub> (60 mg) afforded (–)-epigallocatechin (13 mg), mananthoside I (32 mg), carthamoside B<sub>5</sub> (14 mg), hovetrichoside A (4 mg), and 3,4-dihydroxyphenylpropanol 3-*O-β*-D-glucopyranoside (6 mg), as well as turpenionosides A (8 mg) and B (12 mg), resp.

Acid Hydrolysis of 2. A soln. of 2 (2 mg) in 2M HCl/dioxane 1:1 (2 ml) was refluxed for 2 h. After cooling, the soln. was neutralized with NaHCO<sub>3</sub> and then filtrated to remove the solid. The filtrate was subjected to CC (*Sephadex LH-20*, 50% MeOH/H<sub>2</sub>O) to afford a sugar fraction. This sugar fraction and standard D-glucose (*Sigma*, USA) were each treated with L-cysteine methyl ester hydrochloride (2 mg) in pyridine (1 ml) at 60° for 1 h. Then, the soln. was treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.02 ml) at 60° for 1 h. Subsequently, the supernatant was subjected to GC analysis (*Supelco*, 230°, flow rate 15 ml/min): D-Glucose ( $t_R$  24.2 min) was detected.

3-(3-Methylbut-2-en-1-yl)isoguanine (=6-Amino-3,9-dihydro-3-(3-methylbut-2-en-1-yl)-2H-purin-2-one; **1**): White amorphous powder. UV (MeOH): 203 (5.36), 291 (5.08). IR: 3325, 1767, 1660, 1604, 1576, 1493, 1448, 1410, 1302, 756, 552. <sup>1</sup>H- and <sup>13</sup>C-NMR and HMBC: *Table 1*. ESI-MS (pos.): 220 ( $[M + H]^+$ ), 242 ( $[M + Na]^+$ ), 439 ( $[2 M + H]^+$ ). ESI-MS (neg.): 218 ( $[M - H]^-$ ), 437 ( $[2 M - H]^-$ ). HR-ESI-MS: 242.1021 ( $[M + Na]^+$ , C<sub>10</sub>H<sub>13</sub>N<sub>5</sub>NaO<sup>+</sup>; calc. 242.1018).

19-Hydroxyspruceanol 19-O-β-D-Glucopyranoside (=rel-[(1R,2R,4aR,10aS)-8-Ethenyl-1,2,3,4, 4a,9,10,10a-octahydro-2,6-dihydroxy-1,4a,7-trimethylphenanthren-1-yl]methyl β-D-Glucopyranoside; **2**): White amorphous powder.  $[a]_{D}^{25} = -42$  (c = 0.18, MeOH). UV (MeOH): 211 (4.95). IR: 3421, 1632, 1425, 1398, 1269, 1078, 1040. <sup>1</sup>H- and <sup>13</sup>C-NMR and HMBC: *Table 2*. ESI-MS (pos.): 501 ( $[M + Na]^+$ ). ESI-MS (neg.): 523 ( $[M + HCOO^{-}]^{-}$ ), 955 ( $[2 M - H]^{-}$ ). HR-ESI-MS: 501.2469 ( $[M + Na]^+$ ,  $C_{26}H_{38}NaO_{3}^+$ ; calc. 501.2464).

## REFERENCES

- The Health Bureau of Guangxi Province (Ed.), 'Compilation of Medicinal Herbs in Guangxi, II', Guangxi People Press, Nanning, 1974, p. 1588.
- [2] G. H. Schmelzer, A. Gurib-Fakim, R. Arroo, C. H. Bosch, A. de Ruijter, M. S. J. Simmonds, 'Plant Resources of Tropical Africa 11(1) – Medicinal Plants 1', Backhuys Publishers, Wageningen, Netherlands, 2008.
- [3] E. Omulokoli, B. Khan, S. C. Chhabra, J. Ethnopharmacol. 1997, 56, 133.
- [4] S. Kumar, D. Kumar, R. R. Deshmukh, P. D. Lokhande, S. N. More, V. D. Rangari, *Fitoterapia* 2008, 79, 21.

- [5] T. Begum, M. S. Rahman, M. A. Rashid, Dhaka Univ. J. Pharm. Sci. 2006, 5, 21.
- [6] B. K. Das, S. Bepary, B. K. Datta, A. A. Chowdhury, M. S. Ali, A. S. Rouf, *Pak. J. Pharm. Sci.* 2008, *21*, 333.
- [7] S.-H. Lam, C.-Y. Wang, C.-K. Chen, S.-S. Lee, Phytochem. Anal. 2007, 18, 251.
- [8] J.-M. Tian, H.-P. He, Y.-T. Di, X.-W. Yang, Z.-L. Gao, X.-J. Hao, J. Asian Nat. Prod. Res. 2008, 10, 228.
- [9] S. Valcic, J. A. Burr, B. N. Timmermann, D. C. Liebler, Chem. Res. Toxicol. 2000, 13, 801.
- [10] X.-N. Zhong, H. Otsuka, T. Ide, E. Hirata, Y. Takeda, Phytochemistry 1999, 52, 923.
- [11] Y.-Z. Zhou, H. Chen, L.Qiao, X. Lu, H.-M. Hua, Y.-H. Pei, Helv. Chim. Acta 2008, 91, 1277.
- [12] K. Yoshikawa, N. Mimura, S. Arihara, J. Nat. Prod. 1998, 61, 1137.
- [13] T. Ishikawa, Y. Sega, J. Kitajima, Chem. Pharm. Bull. 2001, 49, 840.
- [14] Q. Yu, H. Otsuka, E. Hirata, T. Shinzato, Y. Takeda, Chem. Pharm. Bull. 2002, 50, 640.
- [15] J.-W. Chern, H.-Y. Lee, M. Huang, F.-J. Shish, Tetrahedron Lett. 1987, 28, 2151.
- [16] R. W. Denton, W. W. Harding, C. I. Anderson, H. Jacobs, S. McLean, W. F. Reynolds, J. Nat. Prod. 2001, 64, 829.

Received April 28, 2010